
PMM U.S.S.R.,Vol.46,pp.550-552 
Copyright Pergamon Press Ltd.lY83.Printed in U.K. 

APPROXIMATE COMPUTATION OF THE LEAST GUARANTEED ESTIMATE 

IN LINEAR DIFFERENTIAL GAMES WITH A FIXED DURATION* 
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A method fortheapproximate computation of the least guaranteed game estimate is 

constructed for linear fixed-duration differential games, and an estimate of its 
rate of convergence is given. The paper is ClOSely related to /l-Y/. 

The motion of an n-dimensional vector z ER" is described by the equation 

2' = A (i) 7, + II + ", z (to) = zo; t E I = Ita, T] (to < T) (1) 
u E P (4 C Rn, u E Q (t) C R”; I P (l) I 4 01 (97 IO (0 I < a, (Q (2) 

The elements of the .n th-order square A (t) are defined and are Lebesgue-sunmiable on I; 
P (1) and Q(t) are nonempty compacta for each t=I and they depend measurably on i EI (see 

/lo/) and satisfy the stated conditions; moreover IX I= maxSEX JZI for a nonempty compacturn 
X cRn, ai is a Lebesgue-summable function on I . The performance of the pair of measurable 
functions IL (i) E P (t), L‘ (1) E Q (I), I E I, is estimated by the quantity e(z(T)) (~(2) is a scalar 
function continuous on fin). The first player deals with the choice of u and strives to min- 

imize 'p (2 (T)). The second player deals with the choice of vector u and strives to maximize 

'P (2 (T)). The second player selects the measurable control o(t)~Q(t) as a program control on 

I. The measurable control u(t) EP(I) is at the first player's disposal and is constructed 

for t ~1 on the basis of knowing Eq.(l), the initial state z(to)= z. and the control L(S) for 
t,<s<t, in the form u(f)- c(t,~~(:)). where ut (.) denotes the function u(s), tods6 1 , while the 

mapping U is defined on the set of measurable functions u (f) = Q (f), f El , and maps such func- 

tions u(.) into the set of measurable functions (L (f)cz P(r), t EI. 

Game (1) is examined from the first player's viewpoint. It is assumed that he knows Eq. 

(l), the vector zo, the function p and the control G((.) for each t ~1. It is natural to 

characterize the perfomlance of the first player's given strategy ci bythequantity sup,(,),) (z(T)j. 

where z(T) (see /l/) corresponds to the measurable controls ,,(1),rr(~)=U(t,uf(.)), t e*. An ini- 

portant characteristic of the first player's capabilities is the quantity 

Y = i;f ;;f q (2 (T)) (3) 

which is called the least guaranteed estimate. The computation of the quantity 'r‘ causes great 

difficulty. Therefore, an approximate computation of y to any preassigned accuracy is of 

interest. 

By cP (f, s) (to < s < t d T) we denote the matrizant (see /ll/) of the homogeneous equation 

I' = A (t) I. We note that for fixed measurable u (1) EP (f),v(f) E Q(f),t EI, the Cauchy formula 
1 

2 (4 = @ (‘2 to) 20 + 1 CD (f, s) (u (4 + u (s)) ds (41 
Ls 

is valid for the solution of Eq.(l). We set 

D = Q, (T, to] zo + i* (T, s) (P (s) + 0 (s)) ds 
1. 

!5) 

where the integral is understood in the sense usual for the theory of multivalued mappings 

(see /lo/) and the plus sign signifies the algebraic addition of sets. It can be proved that 

0 is a nonempty convex compactcm. 
On (T,~T--~] we define the matrix-valued function A (f) (see (1)) as an nth-order null 

square matrix. Now the matrizant 0 (f,s) is defined for toGrdtd2T- f,. The scalar product 

in Rn of arbitrary vectors d and b is defined by the fomiula (a, b) = qb, f... fa,b,, where %, b, 

are the coordinates of vectors a,b. We note the relation (1.1 is the operator nom1 of a 

matrix) 
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useful subsequently 

From the continuity of ~(2) on D it follows that n(r)+0 as r -+o. If m(z) satisfies a 

Lipschitz condition on D,then n(r)=O(r) as r-+0. Let N ai be an integer. We set 

E(a,f3)=exp~IA(r)Ik tada<B<2T--t, 
a 

A (0 = Q, (t. la). t E Ito, 2T - &,I 
a, (t, s) = A (t) A--’ (s), to d s < t Q 2T - to 

For r>O we assume 
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(6) 

n (r) = x, r..E~;,_x”,Cr ’ v (=‘) - ‘p (=“) ’ (7) 

ih ,h 
T-to 

/LEN’ E,= s cP(T, s)P(s)ds, C, = s CD (T, s) Q (4 ds 
(i-Oh Ci--l)h 

(8) 

i=l, . . ..N 

where the integral is understood in the sense usual for the theory of multivalued mappings 

/lO/. We observe that Eiand Ci are nonempty convex compacta. With the number N we associate 

the quantity 

Using formulas (3), (E), (9), it can be shown that 

YN<Y (10) 

We obtain the estimate Y---N when N>,l. Let us consider the integral (u(s)EQ(s),sEI is an 

We have 

(12) 

arbitrary measurable function; U(~ - h)= 0 E Rn, t, gs <to i-h) 

J (u (. )) = i ~-1 (s) (u (s) - v b - h)) ds (11) 

10 

jA-+)u(s-“)di=i - A l(S+h)u(s)ds- f A-l(s+h)v(s)ds= 

p To 

T’-h 
T 

A (s) ” (s) ds + 1 (A-‘@ + h) -A-’ (8)) LJ (s) ds - 
10 

j A-‘(sfh) v (s) ds 

T-h 

We note that d (A-l (t))*/dt = -_A* (t) (~2-1 (t))*, where the asterisk denotes transposition 

yields the following inequality: 

Hence (6) 

8th 

IA-'(S+h)---'(S)I~~(~, h)= 1 IA(t)JE(to,t)dt, tuds<T 
8 

From (2), (6), (11)- (13) it follows that 

iJ(u(.))I~B(h)=STa(~,h)~l(~)d~+ j &(to. s + h) =a (4 ds 
I. T-h 

(13) 

(14) 

We set function H(s,h) equal to the Hausdorff distance between the compacta Q(S) and Q(s-h) 

for t&r<T, where Q (4 = (0) for t, - h < r < t,. It can be proved that when s -I the func- 
tion H(s,h) is Lebesgue-summable and 

Obviously 

where S, is the n-dimensional 
For given ~ET,zEQ(s-_) 

T H(s, h)ds-+O, h-0 
L. 

(15) 

Q (s - h) c Q (s) + H (8, h) s,, s E I (16) 

unit ball centered at the origin. 

we consider the following equation relative to 6=(E*;q*): 

5+rl=+9 E E Q (s), 11 es fl(sr h) s, 
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Among the solutions 5 we pick out the lexicographic minimum L(s,I)= (E*(s,z); rl*(s,l)i. i‘cr ill. 
arbitrary measurable function u(s)EQ(s),sEI , we set 

uo (s, h) = E (8, u ( (s - h)), L’ (4 = 0 E Rn, to - h < s <to 

i*Je note that the inequality 
I uo (s, h) - i’ (s --- h) 1 6 H (s, h), SEEI 

holds on the strength of the definition of u,(s,h) and of (16). Hence from (6), (111, (14) 
follows 

(17) 

where, by virtue of (13)- (15), each swnmand within the brackets tends to zero as h-+ 0. Using 
formulas (4), (lo), (17), we cm prove the validity of the inequality 

Y,v B Y < YN + i2 (11 (h)), h = (T - t,)/N 

where Q(r). p(h) are defined by formulas (7), (17). If the function A (t)is uniformly bounded 
in norm on I, Q(L) satisfies aLipschitz condition (in the sense of the Hausdorff metric) on I 

and the functionrp(z)satisfies a Lipschitz condition on p (see (5)), then from (7), (13), (14), 

(17) it follows that n(p(h))= 0 (h) as h -0. 
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