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APPROXTMATE COMPUTATION OF THE LEAST GUARANTEED ESTIMATE
IN LINEAR DIFFERENTIAL GAMES WITH A FIXED DURATION

M.S. NIKOL'SKII

A method for the approximate computation of the least guaranteed game estimate is
constructed for linear fixed-duration differential games, and an estimate of its
rate of convergence is given. The paper is closely related to /1-—-9/.

The motion of an n-—dimensional vector ze R" is described by the equation

=AMz 4u v, 2(ty) = zo5t =1 = {t5, T] (}o << 1) (1)
veEP ) CRY veQ@) CRY JPH{<al), [0M]<a® (2)

The elements of the .n th-order square 4 (f) are defined and are Lebesgue-summable on I;
P () and Q (1) are nonempty compacta for each (el and they depend measurably on t=! (see
/10/} and satisfy the stated conditions; moreover |X|= max_y|z| for a nonempty compactum
X C R™ a; () is a Lebesgue-summable function on 7 . The performance of the pair of measurable
functionsu () P (), v (1) = Q (1), t =1, 1s estimated by the quantity ¢ (z(T)) (9 (z) is a scalar
function continuous on R7). The first player deals with the choice of u and strives to min-
imize ¢ (z(T)). The second player deals with the choice of vector v and strives to maximize
@ (2 (T)). The second player selects the measurable control v (¢} ¢ ()} as a program control on
I. The measurable control u(f) =P (f) is at the first player's disposal and is constructed
for t =l on the basis of knowing Eq. (1), the initial state :z () = sz, and the control v(s) for
t<<s<<t, in the form u(t) = U (¢, vy (), where v¢(:) denotes the function vis)tp<s< ¢t while the
mapping U is defined on the set of measurable functions v(f)eQ (), te=l , and maps such func-
tions v{(:) into the set of measurable functions u () =P (1), t < 1.
Game (1) is examined from the first player's viewpoint. It is assumed that he knows Eq.
(1), the vector 7, the function ¢ and the control v () for each te1. 1t is natural to

characterize the performance of the first player's given strategy U by the quantity sup,y ¢ (2 (7)),
where z (T) (see /1/) corresponds to the measurable controls v(f),u(®) =U (L, v (), teT An im-
portant characteristic of the first player's capabilities is the quantity
v = inf sup ¢ (2 (7)) (3)
U ()

which is called the least guaranteed estimate. The computation of the quantity v causes great
difficulty. Therefore, an approximate computation of y to any preassigned accuracy is of
interest.

By ®(t,5) (t, <s<<t < T) we denote the matrizant (see /11/) of the homogeneous equation
= A () z. We note that for fixed measurable u(l P (), v = Q@),tel, the Cauchy formula

H
20 =@ )+ [ @t 5) (u(5) v (e)) ds (4)
{e

is valid for the solution of Eg.(l). We set

T
D:®(T,to)zo+5®(T,s)(P(s)+Q(s))ds (%)
to

where the integral is understood in the sense usual for the theory of multivalued mappings
(see /10/) and the plus sign signifies the algebraic addition of sets. It can be proved that
D is a nonempty convex compactum.

On (T, 2T — 1,] we define the matrix-valued function 4 (f) (see (1)) as an nth-order null
square matrix. Now the matrizant ® (t,s) is defined for f<s<t<2r —¢, The scalar product

in R™ of arbitrary vectors a and b is defined by the formula (a, b) = aiby + ... 4 anby, where a;, b;
are the coordinates of vectors a,b. We note the relation (|| is the operator norm of a
matrix)
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1O [<E@G Y ta<s<t<el — 1, (6)
AT OIS E (g, 8), to<t<2T — oy
B

E( B =exp\[4()|dr 6<a<P<T —1
a

A() = (t,t), telty 2T — ¢,)

Q)= ABAIE), th<<s<<t<2T — ¢,

useful subsequently. For r>0 we assume

Qfr) = lo@) —o ("] N

max
x’', x"€D, |x'—x"|<r

From the continuity of ¢(z) on p it follows that Q () -0 as r — 40 If ¢(z) satisfies a
Lipschitz condition on D, then Q(y=0() as r— 40. Let N >1 be an integer. We set

th ih
he Lzl g o ds, C (8)
=—xN b= (T,s)P(s)ds, C, = @ (T, s) Q(s) ds
(i—Dh (i—-1)h

i=1...,

where the integral is understood in the sense usual for the theory of multivalued mappings
/10/. We observe that B;and C; are nonempty convex compacta., With the number N we associate
the quantity

N
Yy = max min ... ma mi D (T, ¢ £,
N et seh “NE("SN ENElqu)( (T, o) ‘“+i§{( 1""11)) (9)

Using formulas (3), (8), (9), it can be shown that
WS Y (10)

We obtain the estimate y — ¥y when N >1. Let us consider the integral (v(s) =Q(s),s=I 1is an
arbitrary measurable function; v(s—h) =0 R", s <t + 1

T
Jey =A@ e —ve—md ()
We have "
T T T
SA“(S)D(S—h)ds:gA‘l(s+h)v(s)ds— g A= (s R) v (s)ds = (12)
f i ‘—
; . TSR .
SA'l () v (s) ds+S(A'1(s+h)—-A'1 () v (s) ds — S A-N(s+h) v (5) ds
b I8 TSk
We note that d(A7!(f)*/dt = —A4* (¢) (A1 (£))*, where the asterisk denotes transposition. Hence (6)
yields the following inequality:
At o o (13)
[AT s+ 8) ~ AL () [ S a(s, k) = S [A@Q|E (e t)dt, t,<s< T
From (2), (6), (11)— (13) it follows that
T T
I EEI<Be = {at, b a6t § Etostmads (14)
& TSR

We set function H (s, ) equal to the Hausdorff distance between the compacta Q (s) and Q (s — &)
for ¢ <s< T, where Q(r)= {0} for ¢ —h<r<t. It can be proved that when s/ the func-

tion H (s, k) is Lebesgue-summable and
T
Sﬁ(s,h)as_,o, B a0 (15)
1
Obviously
Q6 —mCOE+H (s, hS, s (16)

where §; is the nr-dimensional unit ball centered at the origin.
For given sel,z = (s —h) we consider the following equation relative to = (E* n%):

E4n==z E=Q() n=EHENS
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Among the solutions { we pick out the lexicographic minimum Ls,z) = (E* (s, 2); N* (s, 1)). For an
arbitrary measurable function v(s) =Q(s),s=/l , we set

Vols, ) = E(s, 0 ((s—R), v(s)=0&R™ t, —h<s<t,
“e note that the inequality
109 (s, h) —uv (s —h) [ H (s, h), sel

holds on the strength of the definition of v,(s, k) and of (16). Hence from (6), (11), (14
follows

T T

[§ @7 906 ot mds| < iy = Ettor ) (B +§ a5 mE 1o, 5)as) (17)

te to
where, by virtue of (13)— (15), each summand within the brackets tends to zero as h- 0. Using

formulas (4), (10), (17), we can prove the validity of the inequality

INSYS Yy +QMA), k= (D — )N
where Q(r), u(h) are defined by formulas (7), (17), If the function 4 (¢)is uniformly bounded
in norm on I, Q(t) satisfies a Lipschitz condition (in the sense of the Hausdorff metric) on f
and the functiong (z) satisfies a Lipschitz condition on D (see (5)), then from (7}, (13}, (14),
(17) it follows that Q(p(h))=0(h) as ik —0.
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